Limitation of "constancy of asset price ratios" criterion that can be used when final prices are deterministic

The simple condition

$$\frac{A(t)}{N_t} = \frac{A(T)}{N_T}$$

cannot be satisfied when

$$\frac{A(T)}{N_T}$$

has different values in different final states.

In the following toy example, the investigator at present time t thinks that there are exactly two final outcome states, I and II, that can be realized at later time t. The investigator thinks that each of these final states has a finite probability of being realized at time t.

Arbitrage portfolio (a little more generalized)

	Mathematical	English phrase
1.	V(t) = 0	For free
2.	$V(T) \ge 0$	Guarantee of no loss
3.	P(V(T) > 0) > 0	Finite probability of gain

A portfolio satisfying criteria 1, 2, and 3 is a more general example of an **arbitrage portfolio**.

	Portfo	lio
--	--------	-----

Asset	Units	Unit price at time t	Assumptions
Α	α	A(t)	A(t), A(T) > 0 (for this motivating example)
N	ν	N_t	$N_t, N_T > 0$ (keep this constraint in general)

Use criterion 1 to constrain composition of portfolio:

Initial portfolio price

$$V(t) = \alpha A(t) + \nu N_t = 0$$

$$= \nu N_t \left[\frac{\alpha}{\nu} \frac{A(t)}{N_t} + 1 \right] = 0$$

$$\frac{\alpha}{2} - \frac{1}{2}$$

$$V(T) = \alpha A(T) + \nu N_T$$

$$= \nu N_T \left[\frac{\alpha}{\nu} \frac{A(T)}{N_T} + 1 \right]$$

$$= \nu N_T \left[-\frac{\left(\frac{A(T)}{N_T}\right)}{\left(\frac{A(t)}{N_t}\right)} + 1 \right]$$

Trying to construct arbitrage portfolios in different pricing scenarios

	Case	Final portfolio price in state I	Final portfolio price in state II	Strategy
(a)	$\left. \frac{A(T)}{N_T} \right _{II} < \frac{A(T)}{N_T} \right _{I} < \frac{A(t)}{N_t}$	$V(T) _{I} = \nu N_{T} _{I} \underbrace{\left[-\frac{\frac{A(T)}{N_{T}} _{I}}{\underbrace{\left(\frac{A(t)}{N_{t}}\right)}_{\leq 1}} + 1 \right]}_{>0}$	$V(T) _{II} = \nu N_T _{II} \underbrace{\left(\frac{A(T)}{N_T}\Big _{II}}_{<1} + 1\right]$	Set $\nu > 0$
(b)	$\left. \frac{A(T)}{N_T} \right _{II} < \frac{A(T)}{N_T} \right _{I} = \frac{A(t)}{N_t}$	$V(T) _{I} = \nu N_{T} _{I} \underbrace{\left[-\frac{\underbrace{A(T)}{N_{T}} _{I}}{\underbrace{\underbrace{A(t)}_{N_{t}}}} + 1 \right]}_{0}$	$V(T) _{II} = \nu N_T _{II} \left[-\frac{\frac{A(T)}{N_T} _{II}}{\underbrace{\left(\frac{A(t)}{N_t}\right)}_{<1}} + 1 \right]$	Set $\nu > 0$
(c)	$\left. \frac{A(T)}{N_T} \right _{II} < \frac{A(t)}{N_t} < \frac{A(T)}{N_T} \right _{I}$	$V(T) _{I} = \nu N_{T} _{I} \underbrace{\left[-\frac{\underbrace{A(T)}_{N_{T}} _{I}}{\underbrace{\underbrace{A(t)}_{N_{t}} _{N_{t}}}} + 1 \right]}_{<0}$	$V(T) _{II} = \nu N_T _{II} \underbrace{\left(\frac{A(T)}{N_T}\Big _{II}}_{>0} + 1\right]$	No strategy available
(d)	$\frac{A(t)}{N_t} = \frac{A(T)}{N_T} \bigg _{II} < \frac{A(T)}{N_T} \bigg _{I}$	$V(T) _{I} = \nu N_{T} _{I} \underbrace{\left[-\frac{\underbrace{A(T)}_{N_{T}} _{I}}{\underbrace{\underbrace{A(t)}_{N_{t}}}}_{>1} + 1 \right]}_{<0}$	$V(T) _{II} = \nu N_T _{II} \underbrace{\left(\frac{A(T)}{N_T}\Big _{II}}_{1} + 1\right]$	Set $\nu < 0$
(e)	$\left. \frac{A(t)}{N_t} < \frac{A(T)}{N_T} \right _{II} < \frac{A(T)}{N_T} \right _{I}$	$V(T) _{I} = \nu N_{T} _{I} \underbrace{\left[-\frac{\frac{A(T)}{N_{T}} _{I}}{\underbrace{\left(\frac{A(t)}{N_{t}}\right)}_{>1}} + 1 \right]}_{<0}$	$V(T) _{II} = \nu N_T _{II} \underbrace{\left(\frac{A(T)}{N_T}\Big _{II}}_{>1} + 1\right]$	Set $\nu < 0$

Page **3** of **4**

Risk-neutral pricing ansatz

More general **no-arbitrage assumption**: Opportunities to construct arbitrage portfolios are quickly consumed by arbitrageurs.

Only pricing satisfying case (c) can be abundantly sustained.

$$\left. \frac{A(T)}{N_T} \right|_{II} < \frac{A(t)}{N_t} < \frac{A(T)}{N_T} \right|_{I}$$

Betweenness can be expressed using a weighted average.

$$1 \cdot \frac{\dot{A}(t)}{N_t} = p_A^* \cdot \frac{\dot{A}(T)}{N_T} \Big|_{I} + (1 - p_A^*) \cdot \frac{\dot{A}(T)}{N_T} \Big|_{II}$$
$$0 < p_A^* < 1$$

For every asset X with prices X(t), X(T) > 0, it must be that

$$\frac{X(t)}{N_t} = p_X^* \frac{X(T)}{N_T} \bigg|_{I} + (1 - p_X^*) \frac{X(T)}{N_T} \bigg|_{II}$$

$$0 < p_X^* < 1$$

Risk-neutral pricing ansatz

Suppose asset N ("numeraire") has prices $N_t, N_T > 0$. Guess that for all assets $X \in \{A, B, ...\}$,

$$\frac{X(t)}{N_t} = p_X^* \frac{X(T)}{N_T} \bigg|_{I} + (1 - p_X^*) \frac{X(T)}{N_T} \bigg|_{II}$$
$$0 < p_X^* < 1$$

with the stipulation that

$$p_A^* = p_B^* = \dots = p^*$$

The common weighting coefficient p^* is called the **risk-neutral "probability"**.

